
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2006; 50:597–621
Published online 1 September 2005 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/�d.1068

Incompressible SPH simulation of wave breaking and
overtopping with turbulence modelling

Songdong Shao1;2;∗;†;‡

1School of Mathematics and Statistics; University of Plymouth; Drake Circus; Plymouth PL4 8AA; U.K.
2School of Engineering; University of Plymouth; Drake Circus; Plymouth PL4 8AA; U.K.

SUMMARY

In this paper a truly incompressible version of the smoothed particle hydrodynamics (SPH) method is
presented to investigate the surface wave overtopping. SPH is a pure Lagrangian approach which can
handle large deformations of the free surface with high accuracy. The governing equations are solved
based on the SPH particle interaction models and the incompressible algorithm of pressure projection is
implemented by enforcing the constant particle density. The two-equation k–� model is an e�ective way
of dealing with the turbulence and vortices during wave breaking and overtopping and it is coupled with
the incompressible SPH numerical scheme. The SPH model is employed to reproduce the experiment
and computations of wave overtopping of a sloping sea wall. The computations are validated against
the experimental and numerical data found in the literatures and good agreement is observed. Besides,
the convergence behaviour of the numerical scheme and the e�ects of particle spacing re�nement and
turbulence modelling on the simulation results are also investigated in further detail. The sensitivity
of the computed wave breaking and overtopping on these issues is discussed and clari�ed. Copyright
? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The design of breakwaters that allow overtopping has many bene�ts and is being given great
attention in practice. Wave overtopping is a violent natural phenomenon which can cause the
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failure of structures and damage to the properties and life. Previous investigations on the wave
overtopping mainly focused on the empirical formula derived from the laboratory experiments
or �eld observations. Besides, lots of analytical work has also been done in this regard.
However, there are strong limitations in putting these results into practice, since they rely
heavily on a particular site and con�guration. Therefore, there is a great interest in developing
techniques which can predict the wave overtopping accurately and remain applicable over a
whole range of structure geometry, water level and wave condition. Numerical models that
solve the equations of �uid �ow appear to provide just such an approach. Nonetheless, the
�uid �ows in the breaking and overtopping surface waves are highly complex, involving the
interactions between the wave and structure, the strong turbulence and eddy vortices.
Numerous progresses have been made in the numerical simulations of these types of �ows.

For example, Liu et al. [1] presented a Reynolds-averaged Navier–Stokes (RANS) model
for simulating the breaking waves overtopping of a porous structure, in which an improved
k–� model and VOF surface tracking scheme were coupled with their solver. Hu et al. [2],
Shiach et al. [3] and Stansby and Feng [4] employed di�erent forms of the shallow wa-
ter equations (SWE) to study the surface waves overtopping of a structure using the �-
nite volume method. Numerical studies of wave overtopping of simple sea walls using a
RANS approach were also reported by Soliman [5], Soliman and Reeve [6] and Garcia
et al. [7]. Li et al. [8] carried out a detailed investigation into the wave overtopping of
a sea wall by solving the N–S equations coupled with VOF surface tracking scheme and
LES modelling technique. They also further investigated the e�ects of grid spacing re�ne-
ment, Reynolds number, surface tension and turbulence modelling on the overtopping wave
simulations.
Since the wave overtopping accompanied by breaking is an abrupt and large deformation

of the water surfaces, the numerical models based on the traditional Eulerian grid methods,
which discretize the governing equations using a �xed computational grid, bring the problem
of numerical di�usion on the free surface. Numerical di�usion smoothes the shape of water
surface and sometimes dominates the computation. As a result, another kind of numerical
model completely di�erent from the Eulerian approach, i.e. the particle model, has attracted
considerable attention recently. In the particle method, the governing equations are discretized
and solved using individual particles distributed within the computational domain and there
is no grid needed. For instance, the moving particle semi-implicit (MPS) method initially
put forward by Koshizuka et al. [9] is a robust particle approach. It has been successfully
applied to wave breaking and overtopping at an upright sea wall by Hayashi et al. [10].
Another very powerful particle modelling approach, which is employed in the present paper,
is called the smoothed particle hydrodynamics (SPH) method. SPH was originally developed
for the study of astrophysics [11, 12] and recently employed to study the wave overtopping
over the structure by Gomez-Gesteira et al. [13]. In their simulations of incompressible �ows
using the SPH, the incompressibility was realized through a sti� equation of state so that
the �uid was considered to be slightly compressible. This approach is denoted as the weakly
compressible SPH, since a large sound speed has to be introduced into the pressure equation
to ensure the numerical stability. Based on the semi-implicit algorithm of the MPS method
[9], a truly incompressible version of the SPH [14] has been proposed, in which the free sur-
faces were identi�ed and tracked by particles without numerical di�usion. The key di�erence
between the original weakly compressible SPH [11, 12] and the incompressible SPH [14] lies
in that the former calculates the pressure using an equation of state, while the latter employs a
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INCOMPRESSIBLE SPH SIMULATION 599

strict incompressible SPH formulation, in which the pressure is not an explicit thermodynamic
variable but obtained implicitly through solving a pressure Poisson equation derived from the
mass and momentum equations. In this sense, it is also very similar to the pressure projection
method widely used in a grid method and the projection SPH of Cummins and Rudman [15].
Turbulence modelling is another key issue to be addressed in the study of breaking and

overtopping waves. For the non-breaking waves, the potential �ow theory can be used with
enough accuracy. While for the breaking waves, the �ow becomes highly rotational and
complicated, thus necessitating the implementation of more sophisticated descriptions of wave
dynamics. At the current stage, direct numerical simulation (DNS) is still impossible for the
high Reynolds number �ows in large computational domains. Large eddy simulation (LES)
has been put forward to balance the computational accuracy and e�ciency. However, LES still
needs a very �ne grid and this requirement cannot easily be achieved in practice. On the other
hand, the RANS equations coupled with di�erent turbulent closure models have enjoyed great
success in a wide variety of practical �elds. Turbulent stresses in the RANS equations can
be closed using any of the turbulence models. Among the existing turbulent closure schemes,
the two-equation k–� model might be the most popular one which has undergone numerous
tests. For example, Lin and Liu [16] and Bradford [17] successfully employed the k–� model
to investigate the surf zone wave breaking.
Until now it seems that no speci�c turbulence model has ever been designed for the SPH

approach. Monaghan [18] put forward the conception of compressible turbulence in SPH.
This SPH alpha model is an extension of the original XSPH algorithm [12], which aimed to
reduce the particle disorder at short length scales and thus retain the constants of motion. A
hydrodynamic turbulence modelling based on the eddy viscosity model was used by Violeau
et al. [19] in the SPH simulations for a Poiseuille turbulence �ow. Recently, good progresses
have been achieved in coupling the advanced turbulence models with the SPH conception.
For instance, Shao and Gotoh [20] used a 2-D sub-particle scale (SPS) turbulence model to
simulate a dam break and wave breaking on the beach using the MPS and SPH solvers. This
LES–SPS turbulence model, which was derived from the LES formulation, was initially put
forward by Gotoh et al. [21] in the hydraulic applications. In the latest work of Shao [22], a
commonly used two-equation k–� model was coupled with the incompressible SPH method to
investigate the spilling and plunging waves breaking over a slope. The numerical predictions
of surf zone properties are in good agreement with the experimental and numerical data
found from the literatures. In the present paper, we use the numerical model of Shao [22] to
investigate wave breaking and overtopping of a sea wall, since this version of the model is a
natural combination of the SPH philosophy with a well-known turbulence modelling approach
in the hydrodynamic �elds.
The paper is organized in the following ways. First, the governing equations and two-

equation k–� turbulence model for the incompressible SPH approach are presented. Second,
the equation solution processes are formulated, in which a semi-implicit algorithm to compute
the pressure employing an incompressible numerical scheme is proposed. Third, the classical
SPH conceptions and formulations of Monaghan [12] are reviewed. Then the boundary and
free surface conditions which are essential for the SPH computations are discussed. Finally, the
numerical model is applied to simulate the wave overtopping of a sloping sea wall following
the work of Li et al. [8]. The convergence behaviour of the numerical model, the e�ects of
particle spacing re�nement and turbulence modelling on the simulations of overtopping waves
are also further investigated based on di�erent SPH runs.
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2. GOVERNING EQUATIONS AND TURBULENCE MODEL

2.1. Governing equations

Employing the SPH particle approach, the governing mass and momentum equations for a
turbulent �ow are presented in the following Lagrangian form:

1
�
D�
Dt
+∇ · u=0 (1)

Du
Dt
= − 1

�
∇P + g+ �0∇2u+

1
�

∇ · ⇒� (2)

where � is the density, t the time, u the velocity, P the pressure, g the gravitational accel-
eration, �0 the kinematic viscosity of laminar �ow, and

⇒� the turbulent Reynolds stresses.
The mass conservation equation (1) is written in the form of a compressible �ow using a
full derivative. The purpose is to impose the incompressibility by setting D�=Dt=0 on �uid
particles during the semi-implicit incompressible SPH computations.

2.2. Two-equation k–� turbulence model

The k–� model has enjoyed great popularity in the numerical hydrodynamics. It is an important
turbulent closure model on the level lower than the Reynolds stress closure model. In the k–�
model, instead of seeking the direct closure of the Reynolds stress transport equations, an
eddy viscosity assumption is made to relate the Reynolds stress

⇒� in Equation (2) to the
turbulence kinetic energy k and the strain rate of the mean �ow as

�ij=�=2�TSij − 2
3k�ij (3)

where Sij= 1
2(@ui=@xj + @uj=@xi) is the mean strain rate, �T the turbulence eddy viscosity, and

�ij the Kronecker delta.
By assuming the local balance between the turbulence production and dissipation and using

a dimensional analysis, the relationship between the turbulence eddy viscosity �T, turbulence
energy k and turbulence dissipation rate � is established as follows:

�T = cd
k2

�
(4)

where cd is the empirical constant.
The k and � transport equations are derived based on the N–S equations and represented

also in the following Lagrangian form for the SPH approach:

Dk
Dt
=∇ ·

(
�T
�k

∇k
)
+ Pk − � (5)

D�
Dt
=∇ ·

(
�T
��

∇�
)
+ c1�

�
k
Pk − c2� �

2

k
(6)
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where �k , ��, c1� and c2� are other empirical constants, and Pk is the turbulence production
rate de�ned by the resolved mean �ows.
Although the closure assumptions employed in the k–� equations are relatively crude, this

model has been successfully used to predict many complex �ows. The recommended values
for the empirical coe�cients have been given by Rodi [23] as cd=0:09, �k =1:0, ��=1:3,
c1�=1:44 and c2�=1:92. According to Lin and Liu [16], a sensitivity analysis on these pa-
rameters showed that a 10% change in �k , �� and c2� only caused less than 10% change in
the total turbulence energy, while a 10% change in c1� could lead to more than 50% change
in the turbulence energy. In spite of some uncertainties involved, the recommended values
are still adopted for the current SPH computations and the results indicate that they work
reasonably well.
Here it should also be mentioned that these standard values of the turbulence constant

represent a compromise chosen to give the best performance for a range of �ows. For any
particular �ow it is likely that the accuracy of the model calculations can be improved by
adjusting the constants. For example, c2�=1:77 is more suitable than c2�=1:92 for the de-
caying turbulence and c1� and c2� should be adjusted in order to better estimate the rate of
spreading for the round jet. Besides, the empirical coe�cients were selected largely on the
basis of turbulent shear �ows, so alternative values may be required in applications to �ows
that are dominated by extensive or compressive rates of strain. For a complete and accurate
model, a single speci�cation of all the constants may be required.

3. TWO-STEP EQUATION SOLVER

During the incompressible SPH computations, the governing equations (1) and (2) are solved
through a prediction–correction two-step process, as stipulated by Shao and Lo [14] and
Shao and Gotoh [20]. The solution processes are also similar to those formulated in the
SPH projection method of Cummins and Rudman [15]. The �rst prediction step is an explicit
integration in time without enforcing the incompressibility. Only the turbulent stresses, laminar
viscosity and gravitational term in Equation (2) are used and thus an intermediate particle
velocity and position are obtained

�u∗=
(
g+ �0∇2u+

1
�

∇ · ⇒�
)
�t (7)

u∗= ut +�u∗ (8)

r∗= rt + u∗�t (9)

where �u∗ is the increment of particle velocity during the prediction step, �t the time
increment, ut and rt the particle velocity and position at time t, and u∗ and r∗ the intermediate
particle velocity and position.
In the second correction step, the pressure term is used to update the intermediate particle

velocity obtained from the prediction step:

�u∗∗ =− 1
�∗

∇Pt+1�t (10)

ut+1 = u∗ +�u∗∗ (11)
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where �u∗∗ is the increment of particle velocity during the correction step, �∗ the intermediate
particle density after the prediction step, and Pt+1 and ut+1 the particle pressure and velocity
at time t + 1.
Finally, the positions of particle are centred in time

rt+1 = rt +
(ut + ut+1)

2
�t (12)

where rt and rt+1 are the positions of particle in time t and t + 1. Besides, the turbulence
properties are updated according to Equations (5) and (6) after the mean �ow �elds have
been resolved.
The pressure for updating the intermediate particle velocity in the correction step is calcu-

lated from the pressure Poisson equation as follows:

∇ ·
(
1
�∗

∇Pt+1
)
=
�0 − �∗
�0�t2

(13)

where �0 is the initial constant density at each of the particles. This equation is formulated
by combining the mass and momentum equations (1) and (2) and imposing the true incom-
pressibility. The formulation is analogous to that employed in the MPS method of Koshizuka
et al. [9], in that the source term of the equation is the variation of particle densities, while
it is usually the divergence of intermediate velocity in �nite di�erence methods. This semi-
implicit algorithm to calculate the pressures distinguishes the truly incompressible version of
the SPH presented in the current paper from the original weakly compressible SPH of Mon-
aghan [12], in which the following equation of state was employed to obtain the pressure in
an explicit way:

P=B
[(
�∗
�0

)�
− 1
]

(14)

where B is the parameter chosen to ensure the sound speed is a factor 10 larger than the
typical �uid velocity in the model and �≈ 7 is another constant. Equation (14) could cause
pressure �uctuations due to the introduction of empirical constants and the assumption of large
sound speed. In comparison, the real incompressible formulation of Equation (13) is derived
directly from the basic hydrodynamic equations and thus free of assumptions.
For the purpose of e�cient computations, the time step �t is dynamically adjusted in the

simulations based on the constraint of Courant condition and viscous di�usion. Also a particle-
link list should be generated to identify the neighbouring particles to expedite the searching
process. These acceleration techniques e�ectively reduce the computational load from N 2 to
N , where N is the particle numbers.

4. REVIEW OF SPH CONCEPTIONS AND FORMULATIONS

The advantages of SPH arise directly from its Lagrangian nature. Since there is no mesh dis-
tortion, it can e�ectively deal with large deformations and multi-surfaces in a pure Lagrangian
frame. In the SPH concept, the motion of each particle is calculated through interactions with
neighbouring particles by an analytical kernel function. All terms in the governing equations
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are represented through such particle interaction models and thus a grid is not needed. The
underlying assumption of SPH is that any �eld variable of a reference particle can be ex-
pressed with enough accuracy by integrals which are approximated by summation interpolants
over neighbouring particles. Furthermore, the spatial derivatives such as the gradient and di-
vergence can be similarly evaluated by summation interpolants. The SPH equations describe
the motion of the interpolating points, which can be conceptually thought as particles. Each
particle can carry a mass m, a velocity u, and other properties depending on the problem. For
the turbulence modelling, a particle also carries the turbulence eddy viscosity �T, turbulence
energy k and energy dissipation �. For a detailed review of SPH theory see Reference [12].
Using the above concepts, any quantity of particle a, whether scalar or vector, can be

approximated by the direct summation of the relevant quantities of its neighbouring particles b

’a(ra)=
∑
b
mb
’b(rb)
�b(rb)

W (|ra − rb|; h) (15)

where a and b are the reference particle and its neighbours, ’a and ’b the scalar or vector
quantity being interpolated and interpolating, ra and rb the position of particles, W the inter-
polation kernel, and h the smoothing distance. It determines the range with which a particle
interacts with neighbouring particles. In subsequent computations h is set to be twice the
initial particle spacing.
Thus, the �uid density �a of particle a is evaluated by

�a=
∑
b
mbW (|ra − rb|; h) (16)

Kernels can assume many di�erent forms and the use of di�erent kernels is the SPH analogue
of using di�erent di�erence schemes in �nite di�erence methods. By balancing the computa-
tional accuracy and e�ciency, the kernel based on the spline function and normalized in 2-D
is adopted [12].
The gradient term has di�erent forms depending on the derivation used. The following

symmetric form is widely used since it conserves linear and angular momentum exactly:(
1
�

∇P
)
a
=
∑
b
mb

(
Pa
�2a
+
Pb
�2b

)
∇aWab (17)

where the summation is over all particles other than particle a and ∇aWab is the gradient
of the kernel taken with respect to the positions of particle a. Similarly, the divergence of a
vector u at the position of particle a can be formulated symmetrically by

∇ · ua=�a
∑
b
mb

(
ua
�2a
+
ub
�2b

)
· ∇aWab (18)

For the purpose of particle pressure stability, the Laplacian is formulated as a hybrid of a
standard SPH �rst derivative with a �nite di�erence approximation for the �rst derivative, fol-
lowing the original formulation of Cummins and Rudman [15] but representing it in symmetric
form as

∇ ·
(
1
�

∇P
)
a
=
∑
b
mb

8
(�a + �b)2

Pabrab · ∇aWab

|rab|2 (19)

where abbreviations Pab=Pa − Pb and rab= ra − rb are introduced.
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The turbulent stresses in Equation (2) are formulated by applying the SPH de�nition of
divergence (

1
�

∇ · ⇒�
)
a
=
∑
b
mb

(⇒�a
�2a
+

⇒�b
�2b

)
· ∇aWab (20)

With regard to the laminar stress in Equation (2), it simpli�es to

(�0∇2u)a=
∑
b
mb
2(�a + �b)
�a + �b

uabrab · ∇aWab

|rab|2 (21)

where uab= ua − ub.

5. TREATMENT OF BOUNDARY CONDITIONS AND FREE SURFACES

5.1. Identi�cation of free surfaces

In the SPH model, free surfaces can always be easily identi�ed and tracked by particles. Since
there is no particle existing in the outer region of the free surface, the particle density on the
free surface drops abruptly. This criterion to de�ne the free surface is very simple and stable
even under the fragmentation and coalescence of waters such as the plunging and splashing,
according to Koshizuka et al. [9]. A particle is regarded as a surface particle if the absolute
value of the di�erence between the particle density and reference density exceeds 0:01�0. At
the free surface, the viscous e�ect is ignored for simplicity in the present case and this leads
to a simpli�ed normal dynamic free surface boundary condition. We just give a zero pressure
to each of surface particles. The transition of surface and inner �uid particles is allowed in
case of the broken surfaces.

5.2. Initial conditions

The initial conditions are implemented by setting all particle velocities u=0 in the computa-
tional domain at time t=0. Besides, the pressure distribution is assumed to be hydrostatic at
the beginning of computation.

5.3. Fixed solid boundaries

Fixed solid boundaries such as the sea bottom and sloping sea wall are simulated by �xed
wall particles, which balance the pressure of inner �uid particles and prevent them from
penetrating the wall. Di�erent from the treatment of wall particles using an explicit force
function in the original SPH formulation of Monaghan [12], the pressure Poisson equation
(13) is solved on wall particles in the truly incompressible SPH scheme. This is quite similar
to the implementation widely found in a grid method. The velocities of wall particles are set
to be zero to represent the no-slip boundary conditions. In order to impose the homogeneous
Neumann boundary condition on wall particles, several lines of dummy particles are put on
the other side of the wall and the pressure of these dummy particles is set to be equal to the
pressure of neighbouring wall particles. Thus, the normal pressure gradient of wall particles
is approximately zero and we only consider the interactions of neighbouring wall particles
and inner �uid particles while solving the pressure equation.
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5.4. O�shore and onshore wave boundaries

The upstream open boundary is the incident wave boundary, which is modelled by a numerical
wave maker also composed of wall particles. During the computation, the wave maker moves
periodically and its frequency and amplitude are adequately adjusted until the desired incident
wave pro�le is obtained. Following Hayashi et al. [10], the wave maker is designed to be able
to produce an incident wave and meanwhile, absorb re�ected waves from the downstream. The
downstream open boundary is the so-called radiation boundary so that the wave is outgoing
without strong re�ections that may disturb the inner computational domain. It was found from
the previous SPH trials for a simple test of wave propagating over constant depth that the
above absorbing-generating boundary at the upstream inlet leads to ∼ 5% re�ection of the
total waves and the radiation boundary at the downstream outlet transmits ∼ 95% of the total
waves. However, the downstream radiation boundary is not used in the present computations,
since we consider the wave breaking and overtopping of a sloping sea wall.

5.5. Turbulent boundaries and surfaces

Appropriate surface and boundary conditions are also needed for the turbulence properties. On
the free surface, the zero-gradient boundary conditions are imposed for both k and � to ensure
the advective and di�usive �uxes of k and � to be zero, i.e. @k=@n=0 and @�=@n=0, where n
is the unit normal on the free surface. For the SPH particles, this requirement is achieved by
setting the values of k and � of the surface particles equal to those of the particles immediately
underneath free surface in the normal direction. Thus, there is no turbulence exchange between
the air and water.
In theory, the turbulence vanishes on the solid walls so that both k and � become zero

on the wall. However, in practice, the numerical resolution cannot be so �ne as to resolve
the viscous sub-layer. Thus, the boundary conditions for k and � are generally speci�ed in
the turbulent boundary layer instead of right on the wall. Here we follow the approach of
Lin and Liu [16] to use the log-law distribution of mean tangential velocities in the tur-
bulent boundary layer, so that the values of k and � can be expressed as the functions of
distance from the solid boundary and the mean tangential velocities outside of the viscous sub-
layer. Generally speaking, the commonly used log-law distribution is employed for the solid
boundary.
For the k–� model, it is also necessary to seed a small amount of k and � in the initial and

in�ow boundary conditions. Lin and Liu [16] and Bradford [17] used di�erent approaches to
seed the initial turbulence properties and unanimously found that the �nal computational results
were insensitive to the initial seeding. The same conclusion was also drawn by Shao [22] in an
incompressible SPH simulation of spilling and plunging breakers. In this paper, we reasonably
assume that the initial condition should be described in such a way to satisfy �T ≈ �0, while
at the in�ow boundary �T ≈ 10�0 should be applied. It means that the initial turbulence level
is quite low in the inner �uid region and slightly higher near the in�ow boundary. This leads
to the initial seeding values of k=2× 10−5 m2=s2 and �=4× 10−5 m2=s3 for the inner �uids
and k=2× 10−3 m2=s2 and �=4× 10−2 m2=s3 for the in�ow boundary. The similar turbulent
parameters were employed in the SPH computations of Shao [22].
A sensitivity analysis based on the SPH runs shows that the initial seeding has no obvious

in�uence on the CPU time and �nal computational results. However, it does cause some
di�erences in the beginning of computations and in the prediction of wave breakings. For
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example, the smaller seeding of k can slightly delay the initial breaking processes, and vice
versa. The same conclusions were also drawn by Lin and Liu [16] using an RANS modelling
approach.

6. MODEL APPLICATION—WAVE BREAKING AND OVERTOPPING
OF A SLOPING SEA WALL

Wave overtopping of a sea wall is a practical issue in the coastal engineering which can cause
the failure of defence structures. The overtopping �ows can become highly turbulent due to the
presence of wave breaking and the interactions between the shoreward propagating bores and
bores partially re�ected from the structure. Here the incompressible SPH approach with k–�
modelling is employed to investigate regular waves overtopping of a smooth impermeable
sea wall, which is also a well-known engineering design problem. The computations are
compared with the experimental and numerical results of Li et al. [8]. They used a time-
implicit cell-staggered approximately factored VOF �nite volume approach for solving the
unsteady incompressible N–S equations based on the non-uniform Cartesian cut-cell grids.
Meanwhile, the e�ects of turbulence were addressed by using both static and dynamic sub-
grid scale (SGS) LES turbulence models in their formulations.

6.1. Numerical wave �ume and computation parameters

The SPH computations were performed in a numerical wave tank as illustrated by
Li et al. [8]. The computational domain covering a sea wall is 6:3m long and 1:0m high.
The seaward slope of the sea wall is 1:6 and it is 1:3 for the landward slope. The crest
height of sea wall is 0:8m and the width is 0:3m. The distance between the upper o�shore
boundary and the toe of the sea wall is 1:0m. We de�ne x=0:0 and 6:3m as the inlet and
outlet, respectively, and y=0:0 as the original still water line. The initial constant water
depth is d=0:7m. A regular wave with a height H =0:16m and period T =2:0 s is used.
According to the wave dispersion relationship, the corresponding wavelength is calculated to
be L=4:62m. The sketch view of the numerical �ume and con�gurations of the sea wall
are shown in Figure 1. The time-dependent water surface elevations denoted by WG0–WG5
were measured at several locations in the experiment and compared with the present SPH
computations and �nite volume computations of Li et al. [8]. WG5 is located at x=5:9m on
the sea wall crest, which is the area of particular interest in the study of wave overtopping
events. Locations WG4, WG3, WG2 and WG0 correspond to x=5:20, 3.81, 2.02 and 0:0m,
respectively.
During the initial particle set up, a uniform particle spacing �X =0:02m is used, which is

�ne enough to capture the general �ow features during the wave overtopping and breaking
processes, such as the free surface deformations and velocity structures. This resolution is the
same order as the �nest grid of 251× 40 (corresponding to a grid spacing of �X =0:025m)
used by Li et al. [8]. By using this particle con�guration, a total number of N =6000 particles
are involved in the SPH simulations, including 400 wall particles for constituting the o�shore
wave maker, the sea bottom and the sloping sea wall. The overtopped �uid particles are
continuously removed out of the computational domain for the purpose of maintaining the
numerical stability. This treatment of the out�ow boundary by particles is obviously consistent
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Figure 1. Sketch view of numerical �ume and sloping sea wall for wave overtopping [8].

with the practical scenarios. The total loss of �uid mass is about 3% for 10 wave periods
and has no great e�ect on the general simulations, since the overtopping is not severe in the
present case.

6.2. Wave breaking and overtopping scenarios

For a general picture of the wave breaking and overtopping processes, the instantaneous
particle snapshots and velocity �elds during the overtopping within one wave period T are
shown in Figures 2 and 3(a)–(c), respectively, based on the incompressible SPH computational
results. The numerical data were extracted at t=11:8, 12.5 and 13:2 s. The simulated �ow
patterns are very similar to the �nite volume computations of Li et al. [8] and both numerical
models predicted complicated �ow structures due to the wave breaking and overtopping.
Wave overtopping is a highly complicated process, including the wave attack, run-up, run-

down, breaking and overtopping, accompanied by the large deformations of the free surface.
As shown in Figures 2(a) and 3(a), some particles of the preceding wave still continue to
overtop over the sea wall crest, while the majority of �ows have already begun to retreat from
the slope due to the gravitational acceleration. The retreating �ows meet the next approach-
ing wave and this leads to a strong backwash near x=4:2m. The wave breaks violently,
evidenced by the large deformation of free surface and the formation of a roller and large
hydraulic jump. The wave continues to break and run up the slope at t=12:5 s, with the
energy dissipated by the turbulence and advected by the vortices, which is manifested by the
decreasing velocities in the wave front. Finally, the waves overtop of the sea wall at t=13:2 s

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 50:597–621



608 S. SHAO

2 3 4 5 6
-0.4

-0.2

0.0

0.2

0.4
 t = 11.8 s

y 
(m

)

-0.4

-0.2

0.0

0.2

0.4

y 
(m

)

-0.4

-0.2

0.0

0.2

0.4

y 
(m

)

x (m)
2 3 4 5 6

x (m)

2 3 4 5 6
x (m)

 t = 12.5 s

t = 13.2 s

(a) (b)

(c)

Figure 2. Particle snapshots during wave breaking and overtopping.

and an obvious overtopping jet shoots over the sea wall crest, as shown in Figures 2(c)
and 3(c). However, it can be seen that the present wave overtopping is not so strong, since the
sea wall crest is nearly at the same elevation as the incident wave crest and the incoming waves
have already dissipated most of energy through the wave breaking prior to the overtopping.
One of the great advantages of the numerical models is their ability to disclose the evolu-

tions of turbulence �elds in the spatial and temporal domains. Based on the k–� turbulence
modelling, the turbulence kinetic energy distributions during the wave breaking and overtop-
ping are shown in Figure 4(a)–(c) in one wave period, from which the detailed processes
of turbulence production, advection and dissipation are well understood. In Figure 4, the
turbulence energy (2k)1=2 has been normalized by the wave celerity c=

√
gd and only high-

turbulence areas are plotted for illustration. It is shown from Figure 4(a) that (2k)1=2=c in-
creases to the maximum due to the in�uence of wave breaking. The computations clearly show
the tendency that the wave crest curls and plunges forward into the water surface, which is an
indication of a typical plunging breaker. This is also supported by the calculated surf similarity

parameter �= S0=
√
H0=L0 = 0:958, based on the deep-water wave and slope parameters

(S0 = 1=6, H0 = 0:189m and L0 = 6:245m). After the initial wave breaking, Figure 4(b) shows
that the wave energy has been greatly dissipated and the turbulence is advected with the wave
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Figure 3. Velocity �elds during wave breaking and overtopping.

front running up the slope. The peak turbulence energy (2k)1=2=c is only 45% of the previ-
ous value at breaking. Figure 4(c) shows that (2k)1=2=c increases again due to the wave
overtopping over the sea wall crest and the maximum (2k)1=2=c appears at the overtopping
jet. Meanwhile, slightly higher turbulence quantities start to appear in the next wave front.
This is an indication of the production of turbulence due to the incoming wave shoaling and
pre-breaking deformation over the slope.
The turbulence eddy viscosity is another important parameter which measures the mixing

rate for both momentums and substances. We also studied the evolutions of the computed
eddy viscosities and found that the eddy viscosity has a di�erent distribution pattern from that
of the turbulence kinetic energy. As the water depth decreases, the eddy viscosity decreases
much faster in the onshore direction than the turbulence quantity. This is mainly caused by
the fact that the eddy viscosity is proportional to the turbulence length scale and turbulence
energy (2k)1=2, both of which simultaneously decrease as the water depth decreases. Much
more detailed explanations can be found in Reference [16].
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Figure 4. Turbulence kinetic energy distributions during wave breaking and overtopping.

6.3. Comparisons of water surface

For a quantitative evaluation of the incompressible SPH computations with k–� modelling,
the computed water surface elevations at four gauging stations are shown in Figure 5(a)–(d),
respectively. They correspond to WG2 (x=2:02m), WG3 (x=3:81m), WG4 (x=5:2m) and
WG5 (x=5:9m), in which WG4 is located in the surf zone and WG5 is located on the
sea wall crest. Meanwhile, the experimental and numerical data of Li et al. [8] are shown
for a comparison. The experimental data are only available for WG2 and WG3 and all the
data shown in the �gure correspond to the time between t=20:0 and 22:0 s. The numerical
data of Li et al. [8] were calculated from the �nest grid of 251 × 40 and using a dynamic
Smagorinsky model, since they gave the best numerical performance. At WG5 the surface
elevation is calculated with respect to the sea wall crest. It should be mentioned here that the
experimental and numerical data of Li et al. [8] were extracted from their original paper and
thus the plotting resolutions in the �gure must be lower than the original work.
It is shown from Figure 5 that the general agreement between the experimental data and

numerical computations by SPH and Li et al. [8] is quite satisfactory. All results indicate a
feature of typical non-linearity, i.e. higher and narrower wave crest accompanied by a lower
and �atter wave trough. In the areas of WG3 (close to breaking point), WG4 (surf zone) and
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Figure 5. Comparisons of computed water surface elevations by SPH (solid lines) with experimental
(circles) and numerical (dotted lines) data of Li et al. [8].

WG5 (sea wall crest), the wave pro�les increase rapidly at �rst and then diminish slowly
during one wave period, consistent with the non-linear wave theory. As shown in Figure 5(a)
and (b), the SPH computations produce better results than those of Li et al. [8], according
to the experimental data. The good agreement is mainly attributed to the fact that the free
surfaces are accurately tracked by particles without numerical di�usion in the SPH approach.
In Figure 5(c) at WG4 and Figure 5(d) at WG5, the SPH computations predict smaller

water surface levels than those predicted by Li et al. [8], although the tendency of two
numerical wave pro�les are consistent with each other both in the phase and in the shape.
The di�erences are thought to partly arise from the di�erent turbulence models used in the
two numerical simulations. Li et al. [8] employed a dynamic Smagorinsky model for the �nite
volume computations, in which the Smagorinsky constant is an adjustable parameter depending
on the �ow properties. On the other hand, the incompressible SPH method employs a two-
equation k–� model for the turbulence. In spite of the fact that k–� model has been widely
and successfully applied in most �elds in the river engineering, the source of prediction
discrepancies could be traced to the use of constant empirical coe�cients in the model. These
coe�cients were derived from the quasi-steady �ows and thus may behave poorly in strongly
transient turbulence �ows such as the breaking wave. The k–� model tends to overpredict
the turbulence levels for breaking waves and underpredict the corresponding wave surface
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pro�les due to excessive turbulence dissipation. The same problem was also reported by Lin
and Liu [16] for a breaking wave simulation using an RANS approach. The k–� model was
established on the basis of time-averaging process while the �ow unsteadiness is very strong
during the wave breaking. Thus, the applications of k–� model in surf zone hydrodynamics
might need more justi�cations and vigorous tests.

7. SENSITIVITY ANALYSES OF NUMERICAL MODEL

In this section, we use a series of numerical runs and tests based on the previous wave
overtopping case to investigate the in�uence of turbulence modelling and particle numbers
(spatial resolution) on the simulation results. The similar issues were also addressed by
Li et al. [8] using a �nite volume approach and their �ndings are used here for a com-
parison.

7.1. Conservation of incompressibility

Conservation of mass or incompressibility provides a convincing self-check on the accuracy
for incompressible numerical models. For the incompressible SPH model proposed in the
paper, a quantitative measurement of the conservation of incompressibility is provided by
evaluating the di�erences of time-dependent particle densities �(t) with the initial values �0.
It is calculated as the averaged density variation of all particles, normalized with respect to
the initial density [14, 20]:

E(t)=
1
N

N∑
i=1
abs[�i(t)− �0]=�0 (22)

In an ideal incompressible SPH computation, particles should be moved to positions to
satisfy E(t) to be zero at all times. However, it is not realistic in practice and the local particle
density errors cannot be avoided. The accumulation of density errors is to be expected. For any
incompressible numerical scheme, the resulting divergence-free velocity or incompressibility
is achieved only within a spatial truncation error either by the computational precision or by
the numerical scheme itself. Errors in particle positions will lead to density errors. Similar
problems were also reported in an SPH projection method of Cummins and Rudman [15] in
the velocity �elds. In a stable numerical computation, the particle density errors E(t) would
also be expected to be stable.
For a quantitative analysis, the normalized time-dependent particle density errors E(t) are

shown in Figure 6 based on the SPH computations. It is shown that the general accuracy of the
incompressible SPH model is quite satisfactory in that the density errors are controlled within
the order of 10−2. The density errors E(t) increase rapidly at the beginning of the computation
and reach the maximum around t≈ 2:0 s, which is the time scale required for the initial wave
to fully develop in one wave period. Then E(t) continue to stabilize at around 2.0% without
further increase even if the computations have been executed to 10T . The calculated peak
density error by the present incompressible SPH model is quite close to the value of 2.4%
reported by Cummins and Rudman [15] using an SPH projection method for a vortex spin-
down. Furthermore, it is found that the density errors E(t) are reduced by approximately 50%
as the particle spacing is halved to �X =0:01m in a re�ned SPH computation, the result of
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Figure 6. Time-dependent particle density errors of SPH computations using
di�erent particle spacing �X .

which is shown in the same �gure. This means that the improvement of spatial resolutions
can e�ectively reduce the accumulations of errors in the density �eld.

7.2. Repeatability of wave overtopping

The repeatability of computations provides another useful check for the numerical models
dealing with the periodical �ow simulations. Since the waves are produced following the si-
nusoidal motions of a wave paddle in the computations, the wave overtopping should also
have a repeatable occurrence. According to the SPH computations, the overtopping volume
arising from each wave is given in Figure 7. It is shown that the di�erence between each �ow
due to the phase di�erence is very small and the periodical motion of the overtopping �ows
is well reproduced, suggesting that the numerical computations are quite stable even after
long simulations. However, the exact repeatability cannot be maintained in practice, since the
turbulence has a random nature and a�ects the repeatable �ows. According to the statistical
analyses of Figure 7, the mean overtopping volume in one wave is 0:01m2 and the stan-
dard deviation is 0:0005m2. Thus, the mean overtopping rate is calculated to be 0:005m2=s
(T =2:0 s), which belongs to the moderate wave overtopping event by following the clas-
si�cations in the relevant coastal manuals. It is suggested that this kind of wave overtop-
ping could lead to both functional and structural damages if proper engineering measures are
not taken.

7.3. In�uence of turbulence modelling

In order to investigate the in�uence of turbulence model on the computation results, the
incompressible SPH model was re-run by deactivating the k–� turbulence model while keep-
ing the remaining computational parameters unchanged. The computed particle snapshots and
velocity �elds within one wave period corresponding to Figures 2 and 3(a)–(c) (with the k–�
model activated) are shown in Figures 8 and 9(a)–(c), respectively. Compared with Figures 2
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Figure 8. Particle snapshots during wave breaking and overtopping without turbulence modelling.
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Figure 9. Velocity �elds during wave breaking and overtopping without turbulence modelling.

and 3, it is shown that signi�cant di�erences exist during the wave breaking and running up
the slope at time t=11:8 and 12:5 s. The computations without the turbulence model predict
spurious velocities near the wave front due to the lack of adequate turbulence dissipation,
since the �ows become highly turbulent when the waves continue to break in the surf zone.
At time t=13:2 s, the overtopping jet over the sea wall crest calculated without the turbu-
lence model seems to be much weaker. Besides, several individual particles overshoot out of
the free surfaces as seen in Figure 8(a) and (b). This is also attributed to the absence of
the turbulence model, which can guarantee the orderly particle motions and thus eliminate
the excessive particle �uctuations, similar to the XSPH algorithm employed in the original
weakly compressible SPH of Monaghan [12].
To quantitatively evaluate the e�ect of turbulence modelling, the computed water surface

pro�les without the k–� turbulence model are compared with those obtained with the k–�
model and the experimental data of Li et al. [8] in Figure 10(a) and (b), at the gauging stations
of WG2 and WG3, respectively, representing the region away from and close to the breaking
zone. It is shown that the two numerical wave pro�les in each �gure deviate obviously from
each other and the di�erence is more predominant in Figure 10(b) than in Figure 10(a). The
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Figure 10. Comparisons of computed water surface elevations with (solid lines) and without (dotted
lines) turbulence modelling with experimental data (circles) of Li et al. [8].

surface pro�les computed without the turbulence modelling produce relatively higher wave
heights due to the lack of turbulent dissipation. The maximum di�erence in the wave heights
is 0:035m in Figure 10(a) at WG2, while it is 0:05m in Figure 10(b) at WG3, which is the
region close to the breaking point.
The above �ndings indicate that the inclusion of an appropriate turbulence model has a

profound in�uence on the simulations of wave breaking and overtopping, since the turbulence
is quite strong and thus has a great e�ect on the mean �ow �elds. The potential �ow model
cannot adequately capture the energy dissipation in the practical situations and leads to the
inaccurate �ow predictions. A similar conclusion has already been drawn by Li et al. [8].
However, the non-turbulence SPH run did not exhibit any unrealistic large-scale vortex struc-
tures as reported by Li et al. [8], nor did another SPH run in which the laminar viscosity
value was also set to zero.

7.4. In�uence of particle numbers=particle spacing

In order to study the in�uence of spatial resolutions (represented by the particle spacing �X )
on the simulation results, the incompressible SPH model was also re-run using a �ner particle
spacing �X =0:01m and the results are compared with the original runs in which a particle
spacing �X =0:02m was used. The �ner spatial resolution is twice higher than the �nest
grid of 251× 40 (equivalent of a grid spacing of 0:025m) used by Li et al. [8]. In this case,
we have to move the o�shore numerical wave paddle closer to the toe of the sea wall slope,
thereby maintains the particle numbers around N =18000.
The computed particle snapshots and velocity �elds by using �X =0:01m are shown in

Figures 11 and 12(a)–(c), respectively. In addition, the computed water surface elevations at
WG2 (x=2:02m) and WG3 (x=3:81m) are compared with the original SPH runs
(�X =0:02m) and the experimental data of Li et al. [8] in Figure 13(a) and (b). It is
shown from Figure 13 that both SPH runs can equally capture the general wave pro�les in
a satisfactory way but the �ner computations agree better with the experiment. Further, ex-
amining the particle snapshots and velocity �elds of two SPH runs by comparing Figures 11
and 12 with Figures 2 and 3, suggests that more detailed �ow features (such as the wave
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Figure 11. Particle snapshots during wave breaking and overtopping using
re�ned particle spacing �X =0:01m.

breaking characteristics and velocity structures) are resolved by the �ner particle size. For
example, the �ner SPH runs reproduce a strong breaking of the plunging wave. The compar-
isons indicate that the in�uence of particle size is relatively small for the water surfaces but
large for the re�ned structures of the velocity �eld. This is due to the fact that some detailed
small-scale �ows are lost by using a coarser resolution.

8. CONCLUSIONS

The paper presents a truly incompressible version of the SPH method to investigate the
water waves overtopping of a sea wall. The computations are in good agreement with the
experimental data and numerical results from the literature. It is shown that the SPH method
provides an accurate way of tracking large deformations of the free surface. The two-equation
k–� modelling reasonably discloses the turbulence evolution features during the wave breaking
and overtopping, in spite of the fact that constant coe�cients are used in the model. The SPH
computations lead to better agreement of the wave surface pro�les and reproduce the plunging
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Figure 13. Comparisons of computed water surface elevations using particle spacing �X =0:02m (solid
lines) and 0:01m (dotted lines) with experimental data (circles) of Li et al. [8].
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wave collapsing, running up and overtopping. The sensitivity analyses of the numerical model
show that both turbulence modelling and spatial resolution play an important role in the
computations and a �ner particle resolution can disclose much more detailed �ow structures.
Future work is needed to apply the SPH model to the random wave simulations, which are

of greater practical interest.

NOMENCLATURE

B parameter for equation of state
c wave celerity
c1� turbulence constant
c2� turbulence constant
cd turbulence constant
d constant water depth
E(t) time-dependent density error
g gravitational acceleration
h kernel smoothing distance
H wave height
H0 deep-water wave height
k turbulence kinetic energy
L wave length
L0 deep-water wave length
m particle mass
n unit normal on free surface
N particle numbers
P pressure
Pk turbulence production rate
r position vector
S0 slope of beach
Sij element of strain
T wave period
u velocity vector
W interpolation kernel (∇aWab=gradient of kernel)

Greek letters

� constant for equation of state
�ij Kronecker’s delta
�t time increment
�u change in velocity
�X grid or particle spacing
� turbulence dissipation rate
�0 kinetic viscosity of laminar �ow
�T turbulence eddy viscosity
� surf similarity parameter
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� density
�0 initial density
�k turbulence constant
�� turbulence constant
⇒� turbulent Reynolds stress
�ij element of turbulent stress
’ any quantity for interpolation

Subscripts and symbols

a reference particle
b neighbouring particle
ab values between particle a and b
t time
x horizontal coordinate
y vertical coordinate
∗ intermediate value
∗∗ corrective value
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